kester[®]

One Step Chip Attach Materials (OSCA) for Conventional Mass Reflow Processing

Daniel Duffy PhD Lin Xin, Jean Liu, Bruno Tolla PhD

> October 14th 2014 iMAPS, San Diego, CA

Overview

A diversified manufacturer of advanced industrial technology

Headquartered in Chicago, founded 100 years ago with an initial focus on metal cutting tools

Decentralized organization

More than 150 divisions in 57 countries

60,000 employees

19,000 global patents & patent applications

ITW Electronics Group Overview

Kester (materials)

Speedline (equipment)

Vitronics - Soltec (equipment)

Vitronics Soltec

kester

Kester can leverage relationships with sister ITW divisions to produce collaborative solutions for customers

- Highly engineered electronic components and assembly systems for the electronics industry
- Major applications in consumer electronics, medical, automotive and defense markets

Kester's Product Lines

Tacky Fluxes

Fluxing Underfills 🗲

Solder Pastes

Solder Wire

Solderforms

Bar Solder

One Step Chip Attach (OSCA) Process & Materials

Built on Kester's 100+ years of experience in flux and solder chemistry

Thermal Interface Materials

Overview

Questions

Conventional Flip Chip Assembly Process

Why a One Step Chip Attach (OSCA-R) Solution?

- OSCA-R Materials → Enable OSCA Process
 - Process Simplification + Throughput

6+ Process steps 3 Materials - Flux, Cleaner, Capillary Underfill 4 Process Steps 1 Material – OSCA-R

One Step Chip Attach Process & Materials

- Key formulation design considerations for OSCA-R materials
 - Rheology/flow for dispensing and die placement
 - Balance of fluxing & cure chemistry during reflow processing
 - Final cured properties, interconnection and reliability

OSCA-R Material Design

- Full life cycle and thermal requirements are implicit considerations for OSCA-R design
 - Thermal requirements are application specific

• Curing kinetics can be tuned to match application reflow profile within certain limits

OSCA-R Material Design

- OSCA-R materials are multi functional reactive mixtures that thermally cure to a high ۲ performance thermoset polymer composite during reflow processing
 - Selection of components key for fluxing, cure kinetics, final composite performance •

Overview

Questions

OSCA-R Rheology Design - Dispensing

OSCA-R materials designed for compatibility with different dispense processes

OSCA-R Rheology Design - Die Placement

• OSCA-R materials designed to overcome key placement difficulties

kester

OSCA-R Rheology Design – Dispense/Placement

- OSCA rheology design to build shear thinning, viscosity and yield stresses
- CSAM images illustrate impact of yield stress on void entrapment

Traps voids

OSCA-R Design – Fluxing & Cure Kinetics

- Balancing Fluxing and Cure Chemistries with Flow
 - Sequencing, timing of events is critical

OSCA-R Design – Cure Kinetics & Flow

Temperature dependence of OSCA-R rheology critical for fillet formation and solder interconnection

OSCA-R Design - Curing Kinetics

- The curing kinetics of OSCA formulations depend on the reflow profile
 - Curing kinetics tuned to match a particular reflow profile

OSCA-R Performance Window

- Customers prefer different reflow profiles
 - Manufacturing equipment
 - Application specific optimized for yield
 - Die stress and substrate warping
 - Substrate type, component configuration

Formulation Design & Process Window

- Current OSCA-R Formulation Capabilities (pilot production scale)
 - Designed for fast to moderate length reflow profiles to enable high throughput
- Next Generation OSCA-R Chemistries & Materials (R&D scale)
 - Designed for longer reflow profiles with long soak times above

OSCA Application Testing Overview

 Successful use of OSCA-R materials on different 	devices and applications
Specifications	
Substrate → Flex Die → Silicon, 2x6x0.5mm, Bump Count ~ 120 Cu pads, SAC Bumps- 80 micron, pitch 150 micron OSCA-R Unfilled, 40% filled Short Reflow Profile Voids < 10%	
Substrate → FR4 (thin) Die → Silicon, SAC, 6x6x1mm, Bump Count ~ 1000 Cu Pads and Bumps, 130 micron, pitch 170 micron OSCA-R Unfilled + 40% filled Medium, Long Reflow Profiles Voids < 10%	
Substrate → FR4 (thick) Die → Silicon, 5x5x1mm, Bump count ~500 SAC bumps, OSP Cu pads, 80 micron, pitch 254 micron OSCA-R Unfilled, 40%, 60% Filled Short Reflow Profiles Voids < 10%	

OSCA Application Testing Overview

Successful use of OSCA-R materials on different devices and applications

Specifications

Substrate \rightarrow FR4, solder mask Die \rightarrow 5x5x1mm, Daisy chained, full array, SAC bumps OSP Cu pads, diameter 80 micron, pitch 254 micron

OSCA-R Unfilled Short Reflow Profiles Voids Air Release From Substrate

Substrate → Silicon Die → Silicon, 10x10x0.5mm SnAg Bumps, Cu Pads, 80 micron, pitch 150 micron

OSCA-R Unfilled, 40%, 60% Short Reflow Profiles Voids < 2%

OSCA-R Final Properties & Reliability

- Preliminary Thermal Shock Testing
 - Large IO full array devices assembled with OSCA-R materials
 - Pass 500 Cycles, -55C to 125CPost 500x T-Shock
 - OSCA-R materials pass 50hr. HAST testing

10x12x0.3mm 80 micron bumps/pads 150 micron pitch ~5000 bumps 3 test circuits

kester[®]

<u>CSAM</u> No defect propagation at 500 cycles

Die shear before and after HAST testing (Autoclave, T = 121°C, 19 psig).

Time	0 Hr.	50 Hr.
Formula	(kg-force)	(kg-force)
OACA-1	39 (±10)	24 (±8)
OSCA-2	34 (±10)	31 (±10)
OSCA-3	35 (±10)	32 (±10)

OSCA-R Final Properties & Reliability

- OSCA-R materials can be formulated with a range of properties
 - Filler Loading & Size
 - CTE, Tg
 - Viscosity
 - Cure kinetics
 - Thermal Conductivity
- Materials can be adapted to application needs
 - Every application is different
 - Properties, Parts, Preferred Process

Property	Units	Range
Filler Loading	Wt%	0 to 60
Average Filler Size	Micron	0.5
Max. Filler Size	Micron	5
Weight Loss, $T < 300^{\circ}C$	Wt%	4 to 16
Tg	oC	150 +/-10
CTE-1	ppm/K	30 to 70
CTE-2	ppm/K	85 to 210
Thermal Conductivity	W/m-K	0.2 to 0.5
Modulus at 25°C	Gpa	3 to 8
Ultimate Strength at 25°C	Мра	50 to 95
Strain to Break at 25°C	%	1.4 to 2.5
Fracture Toughness, K1c	MPa-m ^{1/2}	1 to 2
Adhesion	Kg-force	18 to 30
Adhesion 50 Hr. HAST	Kg-force	5 to 10
Δ H, Heat of Reaction	J/g	120 to 360
T _O , Onset Temperature	oC	110 to 130
T*, Peak Temperature	oC	160 to 200
% Cure After Reflow	%	> 80%
Reaction Order	Integer	0.9 to 1.3
Half Life at 180°C	Min.	4 to 5
Viscosity, 25C	Pa-s	4 to 65
Shear Thinning Index, 25C	Ratio	1 to 3
Yield Stress	Pa	0 to 10
Temperature Thinning	Kelvin/1000	2 to 8
Pot Life at 25°C	Hours	8

Overview

Questions

Summary & Conclusions

- One Step Chip Attach (OSCA) materials can be used to eliminate steps in flip chip assembly processing using convection or conduction mass reflow
 - Reduced complexity of manufacturing
 - Higher throughput
 - Use existing processing equipment
- Approaches to overcoming the key technical challenges presented
 - Matching flow and chemistry to reflow temperature profile
 - Rational Rheology and Chemical design
- Devices built with low void levels and good preliminary reliability performance
- Process integration is key to enabling OSCA-R materials
 - Chemistry matched to desired reflow processing
 - Rheology adjusted for dispensing and die placement process
 - Die and substrate size, configuration and type are integral considerations for OSCA-R materials and process

Thank you for your attention

Questions?

- Acknowledgements
 - Kester Inc.
 - Kal Chokshi, Maulik Shah, Chris Klimaszewski, Jim Lowe
 - David Eichstadt, Christopher Breach
 - ITW Technical Center
 - Marina Litvinsky
 - Research Triangle Institute, Research Triangle Park, NC.
 - Chris Gregory, Alan Huffman
 - Finetech
 - Neil O'Brian, Wade Gay
 - Sonoscan
 - Michelle Forbes

